Reduced classical field theories:k-cosymplectic formalism on Lie algebroids
نویسندگان
چکیده
منابع مشابه
Classical Field Theory on Lie Algebroids: Multisymplectic Formalism
The jet formalism for Classical Field theories is extended to the setting of Lie algebroids. We define the analog of the concept of jet of a section of a bundle and we study some of the geometric structures of the jet manifold. When a Lagrangian function is given, we find the equations of motion in terms of a Cartan form canonically associated to the Lagrangian. The Hamiltonian formalism is als...
متن کاملHorizontal Subbundle on Lie Algebroids
Providing an appropriate definition of a horizontal subbundle of a Lie algebroid will lead to construction of a better framework on Lie algebriods. In this paper, we give a new and natural definition of a horizontal subbundle using the prolongation of a Lie algebroid and then we show that any linear connection on a Lie algebroid generates a horizontal subbundle and vice versa. The same correspo...
متن کاملk-cosymplectic formalism in classical field theory: the Skinner–Rusk approach
The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order field theories are reviewed and completed. In particular they are stated for singular almost-regular systems. After that, both formalisms are unified by giving an extension of the Skinner-Rusk formulation on classical mechanics for first-order field theories. M.S. Classification (2000): 70S05, 53D05, 53Z05
متن کاملk-Cosymplectic Classical Field Theories: Tulckzyjew, Skinner-Rusk and Lie algebroid formulations
The k-cosymplectic Lagrangian and Hamiltonian formalisms of first-order field theories are reviewed and completed. In particular, they are stated for singular and almost-regular systems. Subsequently, several alternative formulations for k-cosymplectic first-order field theories are developed: First, generalizing the construction of Tulczyjew for mechanics, we give a new interpretation of the c...
متن کاملPoisson Structures on Lie Algebroids
In this paper the properties of Lie algebroids with Poisson structures are investigated. We generalize some results of Fernandes [1] regarding linear contravariant connections on Poisson manifolds at the level of Lie algebroids. In the last part, the notions of complete and horizontal lifts on the prolongation of Lie algebroid are studied and their compatibility conditions are pointed out.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2010
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/43/32/325204